Physics – Grade 10 Unit One – Electricity Chapter 2 – Potential Difference

Prepared & Presented by: Mr. Mohamad Seif

Physics

15 min

Consider battery delivers a constant voltage $V_{PN} = 12V$ connected to 6 lamps as shown in the adjacent figure.

Given L₁ and L₂ are identical

We connect a voltmeter across the terminals of L_3 , it reads -3V.

1. Show on figure the connections of the voltmeter.

2. What does the voltmeter read

 V_{DE} or V_{ED} ?

Quiz 1

3. Calculate V_{BC} and V_{CD} knowing that $V_{EJ} = 4V$.

 $V_{PN} = 12V$; L_1 and L_2 are identical; L_4 and L_5 are

identical; y = -3V.

1. Show on figure the connections of the voltmeter.

Since the voltmeter reads -3V, then the Com is connected to positive pole

2. What does the voltmeter read V_{DE} or V_{ED} ?

The voltmeter reads $V_{\rm ED} = -3 \, {\rm V}$, because the (com) is connected to D, and the voltmeter reads from V to com.

Physics

15 min

 $V_{PN} = 12V$; L_1 and L_2 are identical; L_4 and L_5 are identical; y = -3V.

3. Calculate $V_{\rm BC}$ and $V_{\rm CD}$, knowing that $V_{EI}=4V$.

 L_1 and L_2 are identical then:

$$V_{BC} = V_{CD}$$

$$V_{\rm PN} = V_{\rm PA} + V_{\rm AB} + V_{\rm BC} + V_{\rm CD} + V_{\rm DE} + V_{\rm EJ} + V_{\rm JN}$$

$$V_{\text{PN}} = V_{\text{PA}} + V_{\text{AB}} + V_{\text{BC}} + V_{\text{BC}} + V_{\text{DE}} + V_{\text{EJ}} + V_{\text{JN}}$$

Quiz 1

Physics

15 min

 $V_{PN}=12V;\,L_1$ and L_2 are identical; L_4 and L_5 are identical; y=-3V.

$$V_{\rm PN} = V_{\rm PA} + V_{\rm AB} + V_{\rm BC} + V_{BC} + V_{\rm DE} + V_{\rm EJ} + V_{\rm JN}$$

$$12V = 0V + 0V + 2V_{BC} + 3V + 4V + 0V$$

$$12V = 2V_{BC} + 7V$$

$$12V - 7V = 2V_{BC}$$

$$5V = 2V_{BC}$$
 $V_{BC} = \frac{5V}{2} = 2.5V$

$$V_{\rm BC} = V_{\rm CD} = 2.5 \mathrm{V}$$

Physics

15 min

Now an oscilloscope are connected across the terminals of L_4 . Doc 2 shows a screen of an oscilloscope ($S_V = 3V/div$).

a) Show on figure the connections of the oscilloscope across L_4 .

Ouiz 1

- b) Calculate the voltage across L_4 .
- c) Calculate the potential difference across L_5 .
- d)B is a reference potential. Determine the electric potentials V_C and V_E .

a) Show on figure the connections of the oscilloscope across L_4 .

Since the luminous line moves up, then phase connected to F and ground connected to G.

b) Calculate the voltage across L_4 .

$$V_{FG} = S_V \times y$$

$$V_{\text{FG}} = 3V/\text{div} \times 2\text{div}$$

$$V_{FG} = 6V$$

c) Calculate the potential difference across L_5 .

Using law of addition of voltage:

$$V_{PN} = V_{PA} + V_{AB} + V_{BF} + V_{FG} + V_{GH} + V_{HE} + V_{EJ} + V_{JN}$$

 $12V = 0V + 0V + 0V + 6V + V_{GH} + 0V + 4V + 0V$

$$12V = 10V + V_{GH}$$

$$12V - 10V = V_{GH}ADEM^{B}$$

$$V_{GH} = 2V$$
F

d)B is a reference potential. Determine the electric

potentials V_C and V_E .

$$V_{BC} = V_B - V_C$$

$$2.5V = 0V - V_C$$
 $V_C = -2.5V$

$$V_{\rm CD} = V_{\rm C} - V_{\rm D}$$

$$V_{\rm C} = -2.5 {\rm V}$$

$$V_{\rm CD} = V_{\rm C} - V_{\rm D}$$
 2. $5V = -2.5V - V_{\rm D}$

$$V_D = -5V$$

$$V_{DE} = V_D - V_E$$

$$V_{DE} = V_{D} - V_{E}$$

$$V_{DE} = V_{D} - V_{E}$$

$$V_{DE} = V_{D} - V_{E}$$

$$V_D = 8V$$

Be Smart Academy

